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Numerical and experimental techniques were used to study the physics of flow sep-
aration for steady internal flow in a 45◦ junction geometry, such as that observed
between two pipes or between the downstream end of a bypass graft and an artery.
The three-dimensional Navier–Stokes equations were solved using a validated finite el-
ement code, and complementary experiments were performed using the photochromic
dye tracer technique. Inlet Reynolds numbers in the range 250 to 1650 were consid-
ered. An adaptive mesh refinement approach was adopted to ensure grid-independent
solutions. Good agreement was observed between the numerical results and the exper-
imentally measured velocity fields; however, the wall shear stress agreement was less
satisfactory. Just distal to the ‘toe’ of the junction, axial flow separation was observed
for all Reynolds numbers greater than 250. Further downstream (approximately 1.3
diameters from the toe), the axial flow again separated for Re > 450. The location and
structure of axial flow separation in this geometry is controlled by secondary flows,
which at sufficiently high Re create free stagnation points on the model symmetry
plane. In fact, separation in this flow is best explained by a secondary flow boundary
layer collision model, analogous to that proposed for flow in the entry region of a
curved tube. Novel features of this flow include axial flow separation at modest Re (as
compared to flow in a curved tube, where separation occurs only at much higher Re),
and the existence and interaction of two distinct three-dimensional separation zones.

1. Introduction
Understanding flow separation is of particular importance, since it affects numerous

physical processes, such as pressure and energy loss, heat and mass transfer, and vortex
shedding. Additionally, the development of several types of arterial disease has been
postulated to depend on blood flow separation patterns and their effects on the
arterial wall (Nerem & Cornhill 1980; Ojha 1993). The definition of ‘separation’ in a
fully three-dimensional flow is more complex than in the two-dimensional situation. It
is best understood by looking at singular points in the so-called ‘limiting streamline’
field (also called ‘wall streamlines’ or ‘skin friction lines’; see e.g. Tobak & Peake 1982).

† Author to whom correspondence should be addressed: e-mail: ethier@mie.utoronto.ca.
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Figure 1. Schematic description of streamline topology in the neighbourhood of critical points.
Singular points can be defined by the limiting wall shear stress field on solid surfaces, or by
streamlines on a surface cutting the flow. The terms ‘node of separation’, ‘node of attachment’,
‘line of attachment’ and ‘line of separation’ are only valid for the case of singular points defined
by a limiting wall shear stress field on a solid surface. More specifically, in the case of the
saddle, the limiting streamlines onto which all other limiting streamlines converge define the line
of separation; the limiting streamlines from which all others diverge define the line of attachment.
Not immediately evident from this schematic is the three-dimensional nature of the flow in the
neighbourhood of critical points. For example, consider a cutting surface oriented perpendicularly
to a solid surface bounding the flow. If the cutting surface passes though a node of attachment,
a half-saddle streamline pattern is obtained on the cutting surface. If it passes through a line of
separation, a half-nodal pattern is obtained on the cutting surface, etc.

The limiting streamlines are interpreted as trajectories arising from the vector-valued
wall shear stress field on the solid surface. Singular points in the limiting streamline
field, defined as those points at which both components of the shear stress vanish,
can be divided into two main classes: saddle points and nodes; nodes can be further
subclassified into nodal points and foci (Hunt et al. 1978; Tobak & Peake 1982)
(figure 1). Following Tobak & Peake (1982), we define three-dimensional separation
as the phenomenon occurring when limiting streamlines converge onto a particular
limiting streamline emanating from a saddle point. The limiting streamline onto which
multiple streamlines converge is the line of separation.

In many flows, separation is three-dimensional and unsteady, with the size and
structure of the separation zone(s) demonstrating a strong Reynolds number (Re)
dependence. For example, Armaly et al. (1983), in their study of flow through an
asymmetric expansion in a rectangular channel, observed two separation vortices at
low Re: the first vortex was associated with the primary separation region, while
the second was localized on the wall opposite the step. At low Re, the size of these
separation regions increased with Re. However, with the onset of unsteadiness at
higher Re, the time-averaged data demonstrated a third vortex on the same wall as
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Figure 2. Summary of the locations of separation regions as a function of either Reynolds number
or suction strength from various studies. (a) Flow through an asymmetric expansion in a rectangular
channel (based on Armaly et al. 1983). (b) An axisymmetric expansion in a circular pipe (based on
Iribarne et al. 1972). (c) A rectangular channel with suction from a side branch (based on Pauley et
al. 1990). ReN is nozzle Reynolds number obtained from the constricted section of the tube/channel;
Rex is based on the distance from the channel entry to the start of the suction port (x) and the
velocity at the channel entrance in the absence of suction effects.
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Figure 3. Schematic description of the graft–host junction geometry considered in the present work.
The Z-axis corresponds to the centreline of the host tube, with the Z = 0 plane passing through
the toe.

the primary separation zone. Further, the lengths of the separation zones decreased
rapidly with onset of unsteadiness (figure 2a). Studies of flow through a symmetric
expansion in a circular tube show a similar gradual growth of the separation zone
length with Re, followed by a rapid decrease associated with the onset of unsteadiness
(figure 2b). These observations are generally consistent with those of Armaly et al.,
despite the fact that in the circular tube case a relatively constant flow separation
length around the circumference of the tube was observed, even under unsteady
conditions where the instantaneous velocity distribution was asymmetric (Iribarne et
al. 1972; Ojha et al. 1989, 1990).

Several recent studies have examined in detail unsteady features during the devel-
opment of two-dimensional (Pauley, Moin & Reynolds 1990) and three-dimensional
separation in internal flow (Henk & Reed 1993; Pauley 1994). In the case of suction
flow through a side-branch from a rectangular channel, the separation structure on
the floor of the channel in the symmetry plane was the typical classical separation
bubble at low Re (Pauley et al. 1990). However, with the onset of unsteadiness and
vortex shedding, an unstable multiple vortex structure was produced which consisted
of two co-rotating vortices separated by a relatively small region of counter-rotating
fluid (figure 2c). When the instantaneous streamlines were time-averaged, the structure
appeared as a single separation bubble with a very small region of counter-rotating
fluid lying in the central region of the bubble.

Summarizing the above, single separation zones typically exist at low Re (order
tens to hundreds) in internal flows. For both steady (Armaly et al. 1983; Iribarne
et al. 1972; Macagno & Hung 1967; Pauley et al. 1990) and pulsatile (Ojha et al.
1989) flow, as the Reynolds number or adverse pressure gradient is increased, the size
of the separation zone increases. With further increase in the Reynolds number or
adverse pressure gradient, unsteadiness is initiated, as characterized by roll-up and/or
oscillation of the shear layer and vortex shedding. Coincident with the development
of unsteadiness, the length of the separation region decreases.

In the present work we have studied separation in internal flow through a model
consisting of two cylindrical tubes of equal diameter joining at a 45◦ angle (figure 3).
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This geometry is relevant in studies of flow in the cardiovascular system, where it is
known as an end-to-side anastomosis between a bypass graft and a host artery, and
more generally can be considered a prototype for a generic junction between two
pipes. Experiments indicated the existence of a complex separation pattern in this flow;
however, the features of the separation process differed in important ways from those
described above. Since a complete experimental description of three-dimensional flow
patterns in this geometry was not available, fundamental understanding of the physics
underlying the separation processes was lacking. To better elucidate the separation
flow structures, complementary computational work was therefore undertaken. The
goal of this paper is to describe the major features of flow separation in a 45◦ junction
geometry, with emphasis on the important role of secondary flows.

2. Methods
2.1. Experimental techniques

The model used for experimental studies was a block of ultraviolet-transparent
Plexiglas (refractive index = 1.49) containing two carefully machined right cylindrical
channels of internal diameter 10 mm joining at 45◦. The proximal portion of the
so-called host tube (see figure 3 for terminology) was occluded 3 cm proximal to
the heel, and the inlet section was sufficiently long (96 diameters) to ensure fully
developed flow entering the test section. The test fluid was kerosene (Shell-Sol 715;
ρ = 0.755 g ml−1; µ = 1.43 cP at 20 ◦C; refractive index = 1.43) to which 0.007%
by weight of the photochromic dye 1′, 3′, 3′-trimethylindoline-6-nitro-benzospiropyran
was added. Upon exposure to ultraviolet light, this solution becomes dark blue in
less than 1 µs, allowing dye lines to be formed non-invasively in a test section by
appropriate irradiation with a collimated ultraviolet beam (Ojha et al. 1989).

In the first phase of the study, steady flow in the model was obtained using a
computer-controlled piston pump (UHDC, London, Ontario) at a variety of flow
rates, leading to Reynolds numbers (based on mean inlet velocity and tube diameter)
of 275 to 1650. Clearly noticeable velocity transients lasting for approximately 2 s in
the entrance region and downstream of the toe of the junction were created during
turn-around of the piston in the pump. Any traces gathered during this turn-around
transient were unambiguously distinguishable from other traces and were manually
discarded. Multiple dye lines were simultaneously formed on the symmetry plane of
the model using a XeF excimer laser (LSI Laser Sciences, St. Laurent, Quebec) and
a lens array comprising 22 segments, arranged so that the inter-trace spacing was
1 mm. Traces were photographed on 35 mm film (Kodak Technical Pan 2415 film)
10 to 20 ms following trace formation. Each photographic frame was digitized with
a Nikon LS3500 film scanner using a resolution of 3072× 2048 pixels with 256 grey
levels. Analysis of the displacement of the dye lines allowed flow patterns in the
symmetry plane to be deduced. In particular, wall shear rate was obtained from dye
trace profiles within 0.2 mm of the vessel wall by fitting a third-order polynomial
through approximately eight points in this region. Further details of the technique,
including its accuracy for wall shear stress estimation, are provided elsewhere (Ojha
et al. 1988, 1989).

In the second phase of the study, more detailed measurements were undertaken for
steady flow at a Reynolds number of 550. The experimental apparatus and method-
ology have been described in detail by Couch and co-workers (Couch, Johnston &
Ojha 1996; Couch, Kim & Ojha 1997), and will be only briefly reviewed here. The
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(a)

(b)

Figure 4. Photochromic grids. (a) The ‘undisplaced’ grid was produced from individual traces
captured immediately after the laser was pulsed. (b) Displaced traces were imaged 10 ms after
laser activation. Each displaced trace represents an average of five trace images. The grid spacing
was 0.5 mm. Spaces in the photochromic grid correspond to erroneous traces that were manually
removed.

methodology relies on the formation of a ‘photochromic grid’, obtained by firing a
single laser beam at multiple locations and angles across the test section. This was
accomplished by mounting the test section on a traversing stage, and moving it with
respect to the laser beam so that the entire region of interest in the test section was
sampled. In more detail, for each position of the test section, the following steps were
taken.

1. An individual photochromic dye line was formed at an angle to the host tube
axis by firing a UV laser (VSL 337ND-10Hz, Laser Science Inc., Newton, MA). A
‘subtraction image’ of this dye line was obtained 0 ms after firing the laser.†

2. The subtraction image of step 1 was digitally processed to extract the dye line,
which was then stored as the ‘undisplaced trace’.

3. Step 1 was repeated five times to obtain five individual subtraction images. In
each of these images the time delay between laser firing and image acquisition was
10 ms.

4. The five images obtained in step 3 were averaged pixel-wise, and the averaged
image was digitally processed to extract the dye line. This dye line was recorded as
the ‘displaced trace’.

The model was then moved to the next grid position (0.5 ± 0.01 mm displacement)
and the entire process was repeated. After traversing the measurement region of the
test section, the above procedure was repeated using a different angle between the
host tube and the laser beam. The new angle was selected so that traces obtained
with the second angle would be approximately perpendicular to the traces created
with the first angle.

By overlaying the traces obtained in this manner, ‘undisplaced’ and ‘displaced’
photochromic grids were created (figure 4). Fluid displacement field vectors in the
imaging plane were obtained by mapping the intersections of the undisplaced traces

† Acquiring each ‘subtraction image’ was a three-step process. First, a background image of the
model was acquired with a CCD camera (Kodak MegaPlus 1400, Eastman Kodak, San Diego, CA)
and image-processing board (Dipix XPG 1000, Ottawa Ontario), and stored in a temporary buffer
on the imaging board. Second, the laser was fired, and after a time delay of either 0 or 10 ms, an
image of the model containing the photochromic dye trace was acquired. Third, the background
image was subtracted from the trace-containing image, thereby yielding the subtraction image.
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to the corresponding displaced trace intersections. Approximations to the local fluid
velocity in the imaging plane were then obtained by dividing the fluid displacement
vector by the 10 ms delay time. Occasionally, clearly erroneous traces were produced
when the pump piston reached the end of its travel and reversed. These traces were
manually removed.

This procedure was carried out on 10 different measuring planes in the model.
Specifically, parallel to the (Y ,Z)-plane (i.e. parallel to the symmetry plane of the
model; see figure 3), data were acquired on the X = 0, ±0.3R, and ±0.5R planes,
where R is the host tube radius. Parallel to the (X,Z)-plane, data were acquired on
the Y = −0.6R, −0.4R, −0.1R, 0.3R and 0.5R planes. For each imaging plane the
optics were adjusted as much as possible so that traces were parallel to the imaging
plane, as judged by a sharp trace appearance across the entire field of view. This
was important for imaging planes other than the X = 0 and Y = 0 planes, due to
refractive index differences between the model and working fluid and the circular
cross-section of the host tube.

2.2. Numerical techniques

The unsteady, incompressible, three-dimensional Navier–Stokes equations without
body force terms were solved in Cartesian coordinates using a finite-element-based
code. Newtonian fluid behaviour and rigid walls were assumed. The numerical ap-
proach is described in detail in Ethier, Steinman & Ojha (1999) and Minev & Ethier
(1998), and is briefly summarized here. After non-dimensionalization of all velocities
by the mean inlet velocity U, of all spatial positions by the graft tube diameter D,
of all stresses by ρU2, and of time by the inverse of a circular frequency ω−1, the
governing equations are

4α2

Re

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u, (1)

∇ · u = 0, (2)

where α = D/2
√
ω/ν is the Womersley parameter, and Re = UD/ν is the Reynolds

number. The convective terms were decoupled from the unsteady Stokes equations
using a second-order operator-integration-factor time-splitting approach for contin-
uous systems, based on the work of Maday, Patera & Rønquist (1990) for discrete
systems. The resulting temporally discretized equations were

4α2

Re

(
3un+1 − 4ũn + ũn−1

2∆t

)
= −∇pn+1 +

1

Re
∇2un+1, (3)

∇ · un+1 = 0. (4)

Here un+1 and pn+1 are the (semi-discrete) velocity and pressure at time level n + 1,
while ũn−i (i = 0, 1) is a ‘convected’ velocity field at time level n + 1 obtained by
integrating the pure advection equation between time levels (n − i)∆t and (n + 1)∆t
(Maday et al. 1990). The ũ appearing in equation (3) were determined by a ‘direct’
Lagrangian integration of the pure advection equation, as described in detail by
Minev & Ethier (1998). Briefly, this involved integration of an extrapolated velocity
field to determine characteristic lines terminating at the nodal points of the Eulerian
finite element mesh at time level n + 1, followed by projection of field information
along these characteristics.

Equations (3) and (4) were spatially discretized using a Galerkin finite element
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approach, leading to(
3

2∆t
M + S

)
{ui}n+1 + Re LTi {p}n+1

= M

(
4{ũi}n − {ũi}n−1

2∆t

)
+ {boundary termsi}, (5)

3∑
i=1

Li{ui}n+1 = 0, (6)

where {p}, {ũi} and {ui} are global vectors of nodal values; M , S , and Li are
the consistent mass, diffusion, and divergence matrices, respectively; and T denotes
transpose. Entries in the above matrices are

Mkl = 4α2

∫
Ω

φkφl dΩ, (7)

Skl =

∫
Ω

∇φk · ∇φl dΩ, (8)

Likl = −
∫
Ω

ψk
∂φl

∂xi
dΩ, (9)

where φk and ψk are the (global) velocity and pressure shape functions on the
computational domain Ω. The kth component of the boundary terms in equation (5)
is given by

{boundary termsi}k =

∫
Γ

φk

(
−Re pn+1n̂ · x̂i +

∂un+1
i

∂n

)
dΓ , (10)

where Γ is the boundary of Ω, n̂ is the unit normal to Γ , and x̂i is the unit vector in
the xi-direction. In practice the integral in equation (10) is evaluated only on regions
of the boundary where there is a Neumann (outflow) condition for ui; in regions with
Dirichlet conditions, the kth component of ui is condensed from the linear system
and thus the integral in (10) does not need to be formed. Elemental matrices were
formed by Gaussian quadrature using the formulas given by Keast (1986) with 15
Gauss points per tetrahedral element.

At every time step the {ũi} on the right-hand side of equation (5) were computed,
and then equations (5) and (6) were solved using a preconditioned conjugate gradient
Uzawa method (Cahouet & Chabard 1988). Isoparametric P2–P1 Taylor–Hood tetra-
hedral elements (10 velocity nodes, 4 pressure nodes) satisfying the LBB condition
(Glowinski & Pironneau 1992) were used. This code, and an earlier version, has been
extensively validated (Ethier et al. 1999; Minev & Ethier 1998; Steinman et al. 1996)
against experimental data (Ethier et al. 1999) and an analytical solution (Ethier &
Steinman 1994). For Courant numbers of order one, the computational algorithm
exhibits a velocity error which is of O(h3,∆t2), where h is a characteristic mesh spacing.

2.2.1. Finite element meshing and solution strategy

All simulations were carried out in a half-model of the junction exploiting the
symmetry of the original geometry. The inlet and outlet lengths were 6 diameters
and 18 diameters, respectively. By varying the outlet length of the model, it was



Steady flow separation patterns in a junction 9

confirmed that an outlet length of 18 diameters was sufficient to ensure that outlet
boundary condition did not affect flow features in the region of interest near the toe.
A fully developed (Poiseuille) velocity profile was specified at the graft tube inlet,
the no-slip condition was applied at all solid walls, a traction-free condition was
imposed at the outlet, and a symmetry condition was applied on the centreplane. For
purposes of obtaining steady solutions, time-marching to steady state was employed
(||du/dt||L2

6 10−4). For steady problems, the frequency ω is arbitrary, and was
selected to give maximum convergence rate while maintaining stability. Streamlines
were computed in a post-processing step using the Tecplot visualization package
(v. 7.5; Amtec Engineering, Bellevue, WA), which employs an adaptive predictor–
corrector algorithm. Wall shear stresses were computed in a post-processing step
by analytic differentiation of the velocity shape functions, as described in detail
elsewhere (Ethier et al. 1999). The formal spatial accuracy of the wall shear stress
field is therefore one order lower than that of the velocity field.

In an initial study, we used the P-cube and T-grid meshing packages (Fluent Inc.,
Lebanon, NH) to generate a series of finite element meshes of increasing density,
beginning with 19 907 elements (31 056 nodes) and ending with 88 425 elements
(139 617 nodes). However, even at the highest mesh density, some wall shear stress
features in the separation region showed weak mesh dependence. To ensure fully
mesh-independent velocity and wall shear stress fields, we therefore repeated the
simulations using an adaptively refined series of meshes. The complete adaptive mesh
refinement procedure is described in detail elsewhere (Prakash 1999; Prakash & Ethier
1999, 2000); here we summarize the main features.

After computation of an initial solution at ReD = 550 on a coarse mesh of 3080
elements, the elemental errors were estimated using an extension of the Zienkiewicz
and Zhu (Z2) gradient recovery technique (Zienkiewicz & Zhu 1992). In this technique,
a smooth velocity gradient field is ‘recovered’ from the computed field by minimizing
the square of the difference between the recovered velocity gradient field and the finite
element velocity gradient field over a local element patch. This recovered velocity
gradient field is then compared to the finite element gradient to estimate the solution
error. We modified the Z 2 local patch recovery method by adding the integral of the
square of the residual of the continuity equation to the original recovery functional
so as to enforce the continuity constraint in the recovered velocity gradient field.
Specifically, we minimized the following enhanced functional:

F(σ∗)enhanced =

∫
Ωp

(σ∗ − σ̂)2 dΩ +

∫
Ωp

(σ∗xx + σ∗yy + σ∗zz )2 dΩ (11)

where Ωp is the domain of the element patch, σ̂ is the velocity gradient derived
from the finite element solution, and σ∗ is the recovered velocity gradient. With the
recovered gradients available, the L2 norm of the rate-of-strain error for an element
was then defined as

||ē2||2i =

∫
Ωi

{
(σ∗xx − σ̂xx )2 + (σ∗yy − σ̂yy )2 + (σ∗zz − σ̂zz )2 + 2(σ∗xy − σ̂xy )2

+2(σ∗xz − σ̂xz )2 + 2(σ∗yz − σ̂yz )2
}

dΩi, (12)

where Ωi denotes the ith element.
After estimation of the elemental errors, a refinement index (Prakash et al. 1999) was

computed for every element in the mesh, and was used to tag elements for refinement.
The mesh was then refined using an extension of the octasection algorithm (Liu & Joe
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Figure 5. Variation of the global percentage relative error, η, and the maximum element refinement
index, ξmax , in the mesh as a function of mesh size for ReD = 550. The global percentage relative
error is the estimated overall error in the computational domain. ξmax is the maximum value of
the element refinement indicator for all elements in the mesh (Zienkiewicz & Zhu 1992). Larger
values of ξmax typically indicate unequal error distributions between elements, and the need for
mesh refinement.

1996) for 10-noded tetrahedral elements. This procedure was continued until effective
mesh independence had been attained, as judged by the following three criteria. First,
the estimated global relative error and the maximum element refinement index were
tracked (figure 5) until evidence of asymptotic convergence of these parameters was
observed. Second, extracted velocity profiles at different axial locations for different
meshes were compared until they showed effective mesh independence. Third, wall
shear stress patterns were compared for different meshes until they showed effective
mesh independence. This last criterion was by far the most sensitive, i.e. refinement
of a moderately resolved mesh frequently produced appreciable changes in wall shear
stress with little detectable change in velocity profiles. In fact, we found that the
most sensitive way to detect mesh dependence was to plot contours of zero axial wall
shear stress for different mesh densities. Our results (figure 6) show an essentially
mesh-independent solution for such contours. As well, the locations of critical points
in the wall shear stress field showed effective mesh independence, as will be discussed
in § 3.3.

In total, 16 generations of refinement were carried out, with the final mesh in
the adaptive process containing 186 970 elements (271 530 nodes per half-geometry).
The minimum, maximum and average inter-nodal distances for this finest mesh were
0.0015, 0.57 and 0.0454 diameters, respectively. Refinement was clustered along a
spiral path on the sidewall (figure 7), which, as will be seen, corresponds to the helical
path of high-momentum fluid as it spirals down the host tube after impacting on
the bed of the host tube. The 186 970 element mesh was used for simulations at
ReD = 400, 550 and 700, which are the primary Re of interest in this work. Somewhat
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Figure 6. Plot showing dependence of zero axial wall shear stress contours on mesh density in
host tube at ReD = 550. The three densest meshes of the refined series are shown for half of the
geometry. θ is defined to be the angular position of a point on the wall, measured with respect to
the symmetry plane of the model, as shown in the inset.

coarser meshes were used for simulations at other ReD of 350, 450, 500, 600, 825, and
1000, and results at these Re are only briefly mentioned.

3. Results
3.1. Overview and numerical/experimental comparison

Based on experimental data and numerical results, the following general features of
the velocity field can be identified:

1. A core of high-momentum fluid enters the junction from the graft tube and
travels towards a stagnation point on the bed of the host tube. In the neighbourhood
of this stagnation point, the flow splits into forward and retrograde components
having large near-wall velocities (figure 8 and figure 9). This results in zones of high
shear stress around the stagnation point.

2. The proximal portion of the host tube shows weak counter-rotating vortices on
the symmetry plane. For Re in the range 400–700, two such vortices are present. The
exact locations and strengths of the vortices in this region are only weakly dependent
on Re.

3. Extremely strong secondary flows are present in the downstream section of
the host tube, qualitatively similar to Dean-type vortices (figure 10). The magni-
tude of the secondary flows increases with increasing Re, leading to a tighter pitch
of the helical fluid paths within the host tube. The magnitude of the secondary
velocity associated with this motion is quite large; for example, at Re = 550, the
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Figure 7. Sequence of adaptively refined finite element meshes used in the present study. The
sidewalls of the graft and host tubes are visible in this view.
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Figure 8. Numerically computed velocity field in the junction geometry at ReD = 550. (b) Model
symmetry plane, showing net velocity vectors overlaid with contours of axial velocity. Contours
of zero axial velocity are highlighted, demonstrating two zones of retrograde flow in the host
tube. (a) Cross-sectional slices through the host tube, showing secondary flow velocity vectors and
axial velocity contours. The axial station at which each slice was extracted can be determined by
extending a vertical line from the centre of each subpanel down to (b). Note the strong helical flows
shown in the transverse sections. (c, d) Zoomed view of the distal region of the retrograde flow
zones, corresponding to the boxes in (b). Net velocity vectors are overlaid with contours of axial
velocity, upon which are superimposed streamlines in the symmetry plane. The existence of two
free stagnation points is clearly seen. All velocities have been made dimensionless with respect to
the mean inlet velocity. All vectors are to the same scale, except in (c, d), where the scale has been
multiplied by 3.

secondary velocity magnitude at the sidewall is approximately 70% of the mean inlet
velocity.†

4. For Re less than 250, no retrograde flow (i.e. flow from right to left in figure 8)
exists downstream of the toe on the symmetry plane of the host tube.

5. For Re in the range 250 to 400, a single region of retrograde flow exists im-

† In the immediate neighbourhood of the junction, the definition of secondary flow is ambiguous,
since it could be argued that there is no ‘primary’ flow direction, or even that the primary flow
direction is directed along the graft tube axis. Nonetheless, to avoid complicating the notation, we
refer to any fluid motions in the host tube that are transverse to the tube axis as ‘secondary’. Of
course, this definition is unambiguous downstream of the toe.
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Figure 9. Photographs of the flow patterns in the model symmetry plane at selected Reynolds
numbers (shown on the left). The flash delay used for these and subsequent photographs was 10 ms.

mediately distal to the toe of the junction. The size of this zone and the velocities
within it increase with Re.

6. For Re > 450, two distinct zones of retrograde flow exist: a first zone immedi-
ately distal to the toe, and a second zone further downstream (figure 8). Although
the length of the first retrograde flow zone is only very weakly dependent on Re, the
length of the second zone increases with Re.

A detailed comparison of numerically computed and experimentally measured axial
velocity patterns shows generally good agreement (figures 11 to 14). The agreement
on the symmetry plane is particularly good, with the minor exception that the numer-
ical results predict a slightly larger second retrograde flow zone than was measured
experimentally (figure 11). The axial velocity patterns on the symmetry plane show a
double-peaked profile that is reminiscent of entry flow in a curved tube (figure 12),
confirming the very strong nature of the secondary flows in this geometry. Compar-
ison of velocity profiles for the two largest finite element meshes (157 420 vs. 186 970
elements) shows that effective mesh independence was achieved for velocity field cal-
culations (figure 12). Off the symmetry plane of the model, the experimental data show
evidence of flow asymmetry (compare figures 13(a) and 13(c), and see also experimen-
tal data in figure 14). This asymmetry may explain the somewhat poorer agreement
between numerical and experimental data seen at these locations. The axial velocities
extracted from the plane y/R = −0.1 are particularly interesting (figure 14). The
presence of high-momentum fluid along the sidewalls for Z > 1 is clearly seen, as are
two ‘islands’ of low-momentum fluid emanating from the ‘tops’ of the retrograde flow
zones on the symmetry plane (compare figure 11 and figure 14 at Z = 0.9 and 1.6).

The location of the downstream edge of the retrograde flow zone(s) in the sym-
metry plane shows a rather interesting dependence on Reynolds number (figure 15).
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Figure 10. Selected streamlines in the junction geometry at ReD = 550, seen from the side (a) and
from the outflow end of the host tube (b). Note the helical pattern of the streamlines, causing some
fluid particles to be transported to the near vicinity of the model symmetry plane. The numbers
in the boxes are the magnitude of the secondary velocity relative to the mean axial velocity at the
location shown by the symbol, demonstrating deceleration of the rapidly moving fluid near the
sidewall as it approaches the symmetry plane.
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Figure 11. Contour plots of (a) experimentally measured and (b) numerically computed normalized
axial velocities on the model symmetry plane at ReD = 550. All velocities are normalized by the
mean inlet velocity, and all positions are normalized by host tube diameter. Only the host tube is
shown (toe at Z = 0).
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Figure 12. Comparison of numerically computed (solid lines) and experimentally measured (sym-
bols) velocity profiles on the symmetry plane of the model at ReD = 550. Data from two different
numerical simulations on adaptively refined meshes of 157 420 (thin line) and 186 970 (thick line)
elements are shown; however, only a single line is visible at almost all locations since the two lines
essentially coincide. All velocities are normalized by the mean inlet velocity, and all positions are
normalized by host tube diameter.

Specifically, as Re increases, the length of the first zone stops growing at the same
time as the second retrograde flow zone appears; as Re further increases, the length of
the first zone actually decreases slightly. This figure also allows a general comparison
between numerical and experimental results. Generally, the agreement is excellent,
except for the location of the first retrograde flow zone for low Re (which is somewhat
underpredicted by the numerical simulations), and for the locations of the second
retrograde flow zones for Re = 450 and 500 (which are substantially underpredicted
by the numerical simulations). The reason for such a large discrepancy in the latter
case is not clear, since the location of the second retrograde flow zone is well predicted
at all higher values of Re.

A plot of wall shear stresses along the lower wall of the host tube on the symmetry
plane vs. Re shows reasonable agreement between numerically predicted and exper-
imentally measured values (figure 16). However, there is a consistent trend towards
numerical simulations predicting smaller magnitudes for wall shear stress extrema in
the range 0.6 6 Z 6 1.4 than were experimentally measured. This discrepancy in
wall shear stresses was puzzling, especially in light of the very favourable agreement
in velocities on the model symmetry plane. We therefore considered a number of
factors that could potentially explain these results, including numerical inaccuracies,
experimental error in positioning the laser trace precisely on the symmetry plane of
the model, and experimental error in measuring fluid viscosity (which will affect Re).
We consider each of these in turn.
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Figure 13. Contour plots of (a, c) experimentally measured and (b) numerically computed normal-
ized axial velocities on planes parallel to the symmetry plane for ReD = 550, at X = ±0.3 host-tube
radii, R. All velocities are normalized by the mean inlet velocity, and all positions are normalized
by host-tube diameter. Only the host tube is shown (toe at Z = 0).

Numerical inaccuracies: Preliminary studies using non-adapted meshes of succes-
sively higher densities revealed that the most significant potential source of numerical
error was a spatially under-resolved finite element mesh. However, a detailed com-
parison of wall shear stresses on an adaptive mesh series for Re = 550 shows minimal
mesh dependence for the higher mesh densities used in this work (figure 17a). We
conclude that the observed experimental–numerical shear stress discrepancies are not
due to under-resolved meshes.

Laser trace positioning errors: It is difficult to ensure that the laser traces are
positioned precisely on the symmetry plane of the model. Further, positioning error
is aggravated by the refractive index difference between the model and the working
fluid, although for traces near the symmetry plane this effect is very small and can be
neglected. It was estimated that the traces could have been as far as 0.1 radii away
from the symmetry plane. To investigate the sensitivity of wall shear stresses to trace
positioning, numerically computed wall shear stress data were extracted from the
host-tube lower wall at 0.1 radii away from the symmetry plane. Some deviation from
the values on the symmetry plane was noted, but the differences were generally small
(figure 17a). We conclude that trace positioning errors cannot explain the observed
wall shear stress discrepancies.

Fluid viscosity measurement errors: Errors in viscosity measurement were estimated
to be approximately 10%, and we therefore carried out numerical simulations at
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Figure 14. Contour plots of (a) experimentally measured and (b) numerically computed normalized
axial velocities on the host-tube ‘midplane’ for ReD = 550. This midplane is defined as the
plane y = 0; however, due to trace positioning inaccuracy, it was determined that experimental
measurements were actually made at y/R = −0.1, and the comparison is therefore made for this
plane. All velocities are normalized by the mean inlet velocity, and all positions are normalized by
host-tube diameter. The toe is located at Z = 0. No experimental data were gathered from the
region 0 6 Z 6 0.1, and it is therefore blanked out.

Re = 500 and 600 to bracket our Re = 550 results. Symmetry-plane wall shear
stresses did show a slight Re dependence, but not significant enough to account for the
discrepancies discussed above (figure 17b). We conclude that viscosity measurement
errors cannot explain the observed wall shear stress discrepancies.

We will return to the issue of numerical–experimental comparison in § 4.2.

3.2. Singular points in the velocity field

One way of characterizing junctional flow patterns is to examine the distribution of
singular points in the centreplane velocity field. These are shown for Re = 400, 550
and 700 in figure 18. It is known (Hunt et al. 1978; Tobak & Peake 1982) that the
number and type of singular points in the velocity field on a plane, or in the wall
shear stress field on a surface, must satisfy a constraint arising from the kinematics
of the flow. In the present case this constraint takes the form∑

nodes

+
∑
fact

− ∑
saddles

+
1

2

[ ∑
half -nodes

− ∑
half -saddles

]
= 0, (13)

where
∑

nodes represents the total number of nodal points on the surface of interest,
etc. (Hunt et al. 1978). In this context, half-saddles and half-nodes in the symmetry-
plane occur when singular points in the symmetry-plane streamline field are situated
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Figure 15. Comparison of experimentally determined and numerically computed locations of the
distal (downstream) edge of the retrograde flow zone(s) as a function of Reynolds number. Locations
are measured from the toe and made dimensionless with respect to tube diameter. L1 is the location
of the distal boundary of first retrograde flow zone and L2 the location of the second, where the
boundary of the retrograde flow zone is the zero-axial-velocity contour.

on solid surfaces (see figure 1). All singular point distributions in figure 18 (and in
figures 20–22) satisfy equation (13).

At ReD = 400, the proximal portion of the host tube demonstrates an interesting
combination of foci and half-saddles, associated with the presence of vortices centred
around the two foci. The leftmost vortex is extremely weak. From the streamline
pattern in this region we deduce that fluid that travels retrograde from the stagnation
point along the bed approaches one of the two foci. This fluid then moves in a three-
dimensional fashion away from the symmetry plane, and is convected distally in the
host tube. The bed stagnation point is present as a half-saddle opposite the opening
of the graft tube. The most interesting singular points in the flow are those located
downstream of the toe on the lower wall of the host tube, since an understanding of
the flow in the neighbourhood of these points is the key to understanding axial flow
separation. Just distal to the toe, there is a half-saddle (corresponding to a saddle
point in the limiting streamline field on the lower wall). This marks the upstream
boundary of the retrograde flow zone. Further distal to this point, there is a half-node
caused by secondary boundary layer collision, as discussed in detail in § 4.1.2.

At ReD = 550 (figure 18b), the topology of the critical points in the proximal part
of the host tube is identical to that for ReD = 400, although the exact location of
the critical points shows a weak dependence on Reynolds number. Downstream of
the toe, the half-saddle immediately distal to the toe remains. However, the half-node
distal to the toe present at ReD = 400 has moved away from the wall to form a full
node and a half-saddle. As will be discussed below, the motion of this node away
from the wall is due to secondary flow separation. This node is a free stagnation point,
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Figure 16. Comparison of experimentally determined (symbols) and numerically computed (lines)
normalized wall shear stresses on the model symmetry plane along the lower wall for selected
Re. Symbols denote the mean of five experimental measurements, and error bars represent 95%
confidence limits. The normalized wall shear stress is defined to be the wall shear stress divided by
the shear stress that would exist in Poiseuille flow in a tube of diameter D at the same Re.

i.e. a stagnation point removed from a solid surface, associated with the delivery of
fluid towards the symmetry plane from both halves of the geometry by strong helical
secondary flows. Also noteworthy is the formation of a second triplet of critical points
(two half-saddles and a node) further distal from the toe. These critical points are
associated with the second retrograde flow zone. It can be seen that the topology of
critical points in the second retrograde flow zone is identical to that of the first zone.

At ReD = 700, the topology of all critical points is identical to that at ReD = 550,
although the locations are slightly different than at ReD = 550. It is interesting to
note that the singular points in the proximal portion of the host tube (including the
half-saddle associated with the bed stagnation point) by themselves satisfy equation
(1), as do the singular points downstream of the toe. This reinforces the idea that
the slow-moving fluid in the proximal portion of the host tube communicates only
weakly with the main flow.

3.3. Wall shear stress patterns

Insight into the physics of flow separation is aided by studying wall shear stress
and limiting streamline patterns within the junction, as obtained from numerical
simulations. In figure 19 we plot contours on which the axial component of the wall
shear stress is zero as a function of Re. Immediately adjacent to the wall, fluid within
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Figure 17. Comparison of experimentally determined and numerically computed normalized wall
shear stresses on the model symmetry plane along the lower wall at ReD = 550. (a) The effects of
mesh refinement (lines A–C) and extraction location (line D) on normalized wall shear stress. A:
117916 element adapted mesh; B: 157420 element adapted mesh; C: 186970 element adapted mesh;
D: 186970 element adapted mesh (shear stress extracted at a distance of 0.1R from the symmetry
plane). (b) The effects of small variations in Reynolds number on normalized wall shear stress. A:
117916 element adapted mesh (Re = 550); B: 186970 element adapted mesh (Re = 550); C: 117916
element adapted mesh (Re = 500); D: 117916 element adapted mesh (Re = 600). See figure 16 for
explanation of symbols and error bars.

these contours flows in the retrograde direction, and thus these contours can be
considered as the ‘footprint’ of the retrograde flow zones. The number and extent of
these retrograde zones are consistent with the above qualitative descriptions of flow
on the symmetry plane (e.g. figure 15). There are several noteworthy points about
this figure. The location of the proximal boundary of the first retrograde flow zone
is essentially independent of Re, while the location of the distal boundary depends
on Re (cf. figure 16). The distal boundary of the second retrograde flow zone is only
weakly dependent on Re, and thus the second zone enlarges with Re primarily by
growth in the proximal direction. For Re > 700, the second retrograde flow zone
appears to be interacting strongly with the first zone, and enlarges by developing
‘legs’ that extend proximally and circumferentially.

It is useful to characterize singular points of wall shear stress in this flow as a
function of Reynolds number. We begin by examining the situation at ReD = 400, for
which there is only one retrograde flow zone distal to the toe. There is a total of eight
singular points, as shown in figure 20. The heel is a saddle point (S1), as is the point
where the two counter-rotating vortices in the proximal host tube meet on the upper
wall of the symmetry plane (S3). The stagnation point on the bed of the host tube
is a nodal point (N4), as is an attachment point on the lower wall of the proximal
portion of the host (N2 – just out of field of view in figure 20b). The retrograde
flow zone is associated with two saddle points (S5 and S7), as well as two foci (F6

and its mirror image). All saddle points except for S7 are separation points in the
terminology of Hunt et al. (1978), while all the nodal points and foci are attachment
points. The limiting streamlines of separation and attachment divide the surface of
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Figure 18. Distribution of critical points on the symmetry plane of the model at (a) ReD = 400,
(b) 550 and (c) 700, plotted to scale based on numerical data. F, S, HS, N, and HN refer
to focal, saddle, half-saddle, nodal, and half-nodal points respectively. Lines are streamlines in
symmetry plane; arrows are qualitative descriptors indicating the direction (but not magnitude) of
the symmetry-plane velocity field. The bracketed terms following the half-saddles and half-nodes
are cross-references to the corresponding critical points in the surface wall shear stress field (see
figures 20–22).

the geometry into eight distinct regions (four on each side of the symmetry plane),
which communicate only through fluid exchange from the bulk. The distribution of
critical points on the surface is complex, and understanding of these points can be
facilitated by comparison with the critical points in the symmetry-plane streamline
field (figure 18a). For example, saddle points S5 and S7 correspond to the half-saddle
and half-node immediately downstream of the toe shown in figure 18(a). To facilitate
this comparison, all singular points on solid surfaces in figure 18 are labelled with
their corresponding points in figures 20–22.

As the Reynolds number increases, a second retrograde flow zone forms (figure
21). This second zone has associated with it a saddle and a node on the symmetry
plane (S8 and N10), as well as two symmetrically placed foci (F9 and its mirror image)
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Figure 19. Contours of zero axial shear stress on the lower wall of the host tube for the indicated
Reynolds number, Re. θ is defined to be the angular position of a point on the wall, measured with
respect to the symmetry plane of the model, as shown in the inset. The ‘intersection line’ is the
curve where the graft tube and the host tube meet, while the ‘symmetry line’ is the intersection of
the symmetry plane and the lower wall of the host tube. The toe of the junction is the point where
the intersection line crosses the symmetry line, at θ = Z = 0. Note the upstream extension of the
‘legs’ extending from the second retrograde flow zone for Re > 700.

and two symmetrically placed saddles (S11 and its mirror image). Coincident with the
formation of this second zone, saddle point S7 splits to form a node on the symmetry
plane (N′7) and two symmetrically placed saddles (S′7 and its mirror image). Here
we denote by a prime a critical point obtained by bifurcation of an existing point
at a lower Re. Thus, N′7 and the two S′7 originated from the bifurcation of S7 at
ReD = 400. At Re = 450 (not shown), which is only slightly larger than the critical Re
at which the second zone forms, N′7 and the two S′7 lie almost atop one another, and
then move apart as Re increases to 550. The total number of critical points is now
16 (eight saddles, four foci, four nodal points). The limiting streamlines of separation
and attachment divide the surface into 18 zones (nine on each side of the symmetry
plane).

As the Reynolds number increases beyond 700, the shape of the second retrograde
flow zone changes, with the formation of ‘legs’ that extend circumferentially and prox-
imally (figure 22). The total number of critical points and streamlines of separation
and attachment is the same as for the ReD = 550 case. From examination of the solid
and dashed contours in figures 20–22 it can be seen that there is separation of both
the axial (primary) and secondary flows.

3.4. Vorticity distribution

Vorticity transport in this flow is somewhat complex. We illustrate some of the main
effects by showing contours of θ, Z and radial (r) components of vorticity at selected
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cross-sections in the host tube in figure 23 for ReD = 700. At the toe (Z = 0), the
θ-component, associated mainly with axial flow velocity gradients, is very similar to
that expected for Poiseuille flow, with two minor exceptions. First, there is a slight
displacement of the zero vorticity contour away from the tube centre towards the
upper wall. Second, there is a small region of fluid at the lower wall that has very
substantial θ-vorticity, generated by flow over the sharp toe. At Z = 0.2, this zone of
large θ-vorticity has been displaced away from the lower wall by the first retrograde
flow zone, while the vorticity magnitude in this fluid region has been attenuated by
viscous effects (see lower contour 3 at Z = 0.2 in figure 23a). Meanwhile, a zone
of zero θ-vorticity associated with the retrograde flow zone has developed on the
lower wall, leading to a ‘two-layer’ vorticity structure along the lower wall. Further
downstream (Z > 0.2), the cross-sectional shape of the axial flow separation region,
particularly the ‘legs’ of the second retrograde flow zone, are reflected in the zero
contours of vorticity near the lower wall (compare figures 22 and 23a). However,
the dominant θ-vorticity feature for Z > 0.2 is the generation of large θ-vorticity
values in a boundary-layer-like region† along the upper and side walls. As this
fluid travels downstream its vorticity diffuses away from the wall, as well as being
convected along the sidewalls by secondary flow. At Z ≈ 0.7 the secondary flow
separates from the sidewall, and high-θ-vorticity fluid is carried away from the wall.
Due to nonlinear effects, some of this θ-vorticity is converted to r-vorticity, leading
to a concentrated zone of large r-vorticity at Z = 0.8 (see contour 5 at Z = 0.8 in
figure 23c).

The distribution of Z-vorticity is somewhat different (figure 23b). Z-vorticity is
associated almost exclusively with the secondary flow boundary layer on the sidewall,
which can be seen to spiral down the host tube. One interesting feature of the Z-
vorticity distribution is the presence of a zone of fluid with negative Z-vorticity near
the sidewall at Z = 0 and 0.2. This is due to fluid with negative Z-vorticity being
entrained from the proximal portion of the host tube. The decay of Z-vorticity with
distance down the host tube is more rapid than the decay of θ-vorticity.

Finally, in figure 23(c), we show the r-component of vorticity. Immediately down-
stream of the toe (Z < 0.8), there is essentially no r-vorticity. As discussed above,
at Z = 0.8 substantial r-vorticity is generated by nonlinear effects as fluid elements
with appreciable Z- and θ-vorticity separate. In fact, the generation of r-vorticity is
extremely intense near the proximal focal point seen in the second retrograde flow
zone (figure 22). This high-r-vorticity fluid is convected along the edge of the second

† We refer to boundary-layer like regions, rather than simply boundary layers, since there is
appreciable non-zero vorticity outside of these thin regions.

Figure 20. Wall shear stress field, critical points and limiting streamlines in the junction geometry
at Re = 400, plotted to scale based on numerical data. (a) Enlarged view of the region distal
to the toe on the lower wall, using the same coordinate system as in figure 19. Contours of
zero axial and circumferential components of wall shear stress are indicated by dashed and solid
lines, respectively. In the upper half, selected limiting streamlines are shown; in the lower half,
critical points are labelled. Compare these critical points with corresponding labels in figure 18.
(b, c) Three-dimensional view of critical points in the junction: (b) lower wall, (c) bed. Solid lines
overlain with arrows are limiting streamlines of separation and attachment. Arrows are qualitative
descriptors indicating the direction (but not magnitude) of shear stress field. There is a limiting
streamline of separation that originates at S1 and travels along the junction of the two tubes that is
only partially visualized in this view. Legend: S – saddle point; N – nodal point; F – focus point;
attach – limiting streamline of attachment.
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Figure 22. As figure 20(a) but at Re = 700. Three-dimensional view (b, c) is not shown since it is
very similar to that of figure 21(b, c).

retrograde flow zone (figure 23c). As this occurs, the magnitude of r-vorticity grows,
apparently due to viscous shearing associated with the lateral edge of the second
retrograde flow zone. The presence of localized regions of large r-vorticity can be
used to explain the ‘smearing’ of photochromic traces seen experimentally, e.g. at
Re = 550 for the 5th to 7th traces from the right in figure 9. Although the traces
were positioned within the plane of symmetry, the trace dimension into this plane
was roughly two times the width (Z-dimension) of the traces. This finite width, in
combination with large r-vorticity near the symmetry plane, leads to a twisting of the
traces, which appears on photographs as trace ‘smearing’.

In summary, vorticity in this flow is generated primarily by axial and secondary
flow boundary-layer-like structures on the upper and side walls of the host tube distal
to the toe. This vorticity is convected in a spiral path along the sidewalls by the high-
momentum fluid that originally impacted on the bed of the host tube. Secondary flow
separation at Z ≈ 0.7 causes this fluid with large θ- and Z-vorticity to be convected
away from the wall. As the fluid leaves the wall, nonlinear effects partially transform
the θ- and Z-vorticity into r-vorticity, which is then convected towards the symmetry
plane of the model.

3.5. Transition to unsteadiness

Experimentally, we searched for evidence of unsteadiness by carrying out repeated
runs at selected Re, and then carefully comparing photochromic traces taken at
different times and in different runs. If traces were highly repeatable from image to
image at a given Re, then we concluded that unsteadiness was not present. Transition
to unsteadiness was seen at ReD = 1650 but not at ReD = 1100, as indicated in figure
24, in which three different images for ReD = 1100 and 1650 reveal a steady and an
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Figure 23. For caption see facing page.

unsteady flow field, respectively. Characteristic features during the transition stage
included unsteadiness of the shear layer and the shedding of a vortex along the upper
wall, similar to the observations of Pauley et al. (1990). The top frame in figure 24(b)
shows the presence of a single separation vortex, while the other two frames appear
to be photographed at instants of vortex shedding and as such indicate a multiple
vortex structure. Figure 25 shows that further downstream (beyond Z/D = 2), the flow
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Figure 23. (a) θ- (b) Z- and (c) r-components of vorticity on selected slice planes through the host
tube for Re = 700. The vorticity has been normalized by U/D. (a) Label 1, ωθ = −4; 2, 0; 3, 4; 4,
8; 5, 12; 6, 16. (b) Label 1, ωZ = −10; 2, −5; 3, 0; 4, 5; 5, 10; 6, 15. (c) Label 1, ωr = −1.6; 2, 0; 3,
1.6; 4, 3.2; 5, 4.8; 6, 6.4.

(a) (b)

Figure 24. Photographs taken at three different instants for (a) Re = 1100 and (b) Re = 1650. Note
the very good agreement between the images in (a), confirming the steady nature of the flow at
Re = 1100. The flow is clearly unsteady at Re = 1650; the upper two frames of (b) show a rapidly
moving flow structure which we hypothesize is a shed vortex (open arrow). Bold arrow indicates
the distal boundary of the first retrograde flow region.

remained laminar and began to redevelop for ReD = 1100, whereas, for ReD = 1650,
the wall jet broke down and it appeared that transition to turbulence was initiated.
These observations differ from those in other studies of internal flow separation,
in that our results show that the existence of multiple separation zones and the
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Figure 25. Flow patterns further downstream at selected Reynolds numbers. In these images, the
leftmost trace is positioned approximately 2 diameters downstream of the toe.

‘shrinkage’ of the first separation zone with increasing Re were not associated with
unsteadiness.

4. Discussion and conclusions
Flow separation in this junction geometry is highly complex and shows many

features not present in a ‘classical’ separated flow.† Although the existence of a single
separation zone distal to the toe was expected, the presence of a second separation
structure at higher Reynolds numbers was somewhat surprising (Ojha 1995). Even
more surprising was the fact that the formation of a second separation zone did not
coincide with transition to unsteadiness, as is usually the case. These facts can be
explained by the observation that separation is critically dependent on the existence
of strong secondary flows, and in some sense is ‘driven’ by secondary flow. Several
conclusions follow from this point:

Although only the case of a 45◦ junction has been considered in this work, we
expect that any junction in which sufficiently strong secondary flows exist will show
two such separation zones. The location and size of the secondary separation zone
will depend both on junction geometry (angle) and Reynolds number.

The dynamics of the separation process are not dependent on the detailed geometry
of the junction line between the two tubes, but instead are determined mainly by bulk
flow patterns in the host tube. In particular, the existence of multiple separation zones

† By a classical separated flow we mean a flow characterized by two-dimensional separation in
which there is a well-defined separation streamline that divides the flow into two non-communicating
regions.
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at higher Re does not depend on the ‘sharpness’ of the toe region. We have confirmed
this latter point by simulating flow in a junction identical to that considered in the
present study, with the exception that the junction line between the two tubes had
rounded corners.

The size of the retrograde flow zones seen in figure 19 can be explained in terms of
secondary flow effects. Generally, the relative magnitude of secondary flow velocities
increases with increasing Re. At low Re (ReD 6 400), this causes an increase in
the magnitude of the local adverse pressure gradient, and therefore growth of the
first retrograde flow region. At somewhat higher Re (450 6 ReD 6 650), a second
retrograde flow region forms as secondary flows become even stronger. This second
region enlarges with increasing Re, until it begins to interact with the first region, for
ReD > 700, at which point the first region begins to shrink. For these large Re, the
second region is constrained to grow by extension of the ‘legs’ previously described.
We speculate that transition to unsteadiness, which we have shown to develop at
ReD ≈ 1650, may be associated with an instability initiated in these legs, although the
precise mechanism for such instability is not clear.

4.1. Comparisons with entry flow in a curved tube

Entry flow in a curved tube or duct is a classical fluid mechanical problem that has
been extensively studied by a number of authors; for reviews see Berger, Talbot &
Yao (1983) and Ito (1987). The flow examined in this paper is closely analogous to
entry flow with Poiseuille inlet velocity profile in a circular tube of strong curvature,
especially since the flow in the proximal portion of the host tube appears to have
minimal effect on separation patterns distal to the toe. It is therefore of interest to
compare the axial flow separation seen in this study with the details of entry flow in
curved ducts or pipes.

4.1.1. Previous studies of entry flow

Stewartson, Cebeci & Chang (1980) considered entry flow in a curved tube in the
asymptotic limit of small curvature ratio, a/R, and high Dean number, κ = Re(a/R)1/2,
where a is the tube radius and R is the radius of curvature of the tube following the
notational convention of Berger et al. 1983. Their analysis assumed an irrotational
core flow surrounded by a three-dimensional boundary layer, consistent with the case
of flow entering from a large reservoir into the curved section. They predicted a
collision of the secondary flow boundary layers on the symmetry plane at a finite
distance from the inlet, at which point the streamwise (axial) wall shear stress vanished,
presumably indicating axial flow separation. The structure of this separation region
was further elucidated by Stewartson & Simpson (1982), who suggested that the
axial flow boundary layer was ‘lifted away’ from the tube wall by the secondary
flow boundary layers colliding underneath it. Yao & Berger (1988) and Kluwick &
Wohlfart (1984) extended Stewartson et al.’s calculations to the case of finite curvature
ratios. For a/R < 0.5, Yao & Berger predicted that the location of the point of zero
axial wall shear stress would move closer to the inlet; for larger values of a/R it
would begin to move downstream. For finite a/R, separation was due to the collision
of secondary flow boundary layers, as originally proposed by Stewartson et al. for the
case of asymptotically small a/R (Stewartson et al. 1980).

All of the above studies are boundary layer analyses valid in the limit of large
Dean number. Other investigators have numerically solved the full Navier–Stokes
equations (e.g. Soh & Berger 1984; van de Vosse et al. 1989), or partially parabolized
approximations thereof (e.g. Humphrey, Iacovides & Launder 1985; Liu & Masliyah
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1996), for a variety of curvature ratios, Dean numbers and inlet flow conditions.
Although there were some difficulties with mesh resolution (particularly at high Dean
numbers (Humphrey et al. 1985)), axial flow separation was not predicted in any
of these studies. For larger Dean numbers (in the range 600 to 2100) these studies
showed a clear trend towards a point of minimum (but non-zero) axial shear stress at
a finite distance from the inlet. One could therefore speculate that if the calculations
were extended to higher Dean numbers, axial flow separation might have been seen.
We conclude that these calculations are not inconsistent with the predictions of the
boundary layer theories.

Velocity and wall shear stresses have also been studied experimentally for entry
flow in curved tubes. Talbot & Wong (1982) measured wall shear stress along the
inner wall of a curved pipe with a/R = 1/7. No axial flow separation was seen for
κ 6 1622. Talbot and Wong’s data agreed very well with Yao & Berger’s boundary
layer calculations upstream of the point of zero axial wall shear stress (Yao & Berger
1988). However, agreement downstream of this point was poor. Agrawal, Talbot
& Gong (1978) also observed no axial separation, although secondary separation
was seen at κ = 678 and a/R = 1/7. Tanishita et al. (1991) observed secondary
separation for entry flow in a curved pipe with a/R = 1/2; however, no axial flow
separation was noted. In that study, the maximum secondary velocities were 90% of
the mean inlet velocity, which again is slightly less than that seen in the present study
for Re = 550. Other studies (Bovendeerd et al. 1987; Choi, Talbot & Cornet 1979;
Kluwick & Wohlfart 1986; Olsen & Snyder 1985) with Dean numbers < 2900 and a
variety of inlet flow boundary conditions found no evidence of axial flow separation.
Eventually, of course, axial flow separation is observed at sufficiently large Dean
numbers, e.g. Tananayev, Gontsov & Marinova (1982), who studied flow in a pipe
bend for κ ≈ 300 000. It has been reported (Ward-Smith 1980) that axial separation
is always observed in curved tubes with a/R less than about 1.5, but this occurs for
very large values of Re (order 104 or larger).

There have also been a number of studies of developing flow in a duct of square or
rectangular cross-section. Axial flow separation is known to occur in the outer corners
of such ducts (Chung & Hyun 1992; Humphrey, Taylor & Whitelaw 1977; Soh 1988).
However, this separation is not analogous to that seen in the present study, since it
occurs by a different mechanism not related to secondary flow effects per se, and since
it occurs on the outer wall (corresponding to the bed in our geometry). Axial flow
separation on the inner wall was not observed in these studies, which considered Dean
numbers up to 933. On the other hand, Shiragami & Inoue (1986) observed axial
flow separation in their experimental studies of flow in a 90◦ bend in a rectangular
duct. However, they attached their bend to a long straight upstream duct section to
produce fully developed flow entering the bend. Additionally, flow was likely to be
turbulent for larger Dean numbers. Therefore, their inlet conditions differed from
those expected for entry flow from a reservoir. They reported critical Dean numbers
for separation ranging from 2000 to 3000, depending on curvature ratio. The structure
of their separation region is not described in detail, but is consistent with a model
based on secondary flow collision on the symmetry plane.

4.1.2. Mechanics of separation in the junction geometry

There is an important difference between flow in the junction and the majority
of the above-cited studies. Specifically, in our work, the flow approaching the toe is
Poiseuille, and is thus not analogous to entry flow from a reservoir. This has two
important implications.
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The concept of an axial flow boundary layer is no longer valid. However, the
idea of a secondary flow boundary layer is still conceptually useful (note the large
concentration of vorticity in the near-wall regions just distal to the toe; figure 23).
Therefore, despite the lack of an irrotational core flow in the junction geometry, we
can speak of a secondary flow collision that has qualitative similarities to the theory
put forward by Stewartson et al. (1980).

A Poiseuille inlet flow favours separation more than an inviscid inlet profile (Olsen
& Snyder 1985). This difference is due to two reasons. First, the lower-wall shear rate
in Poiseuille flow is easier to reverse (for a given pressure gradient) than that in a
developing inviscid flow. Second, a potential vortex core forms when flow enters from
a reservoir; this vortex shifts the velocity peak towards the inner wall, at least for
stations close to the bend inlet, and therefore increases inner-wall axial shear.

Additionally, the Dean number for the junction geometry is not well-defined,
thereby complicating direct comparison with studies in curved tubes and ducts. As a
rough estimate of an effective Dean number in our study, we note that at ReD = 550
the maximum secondary velocity occurs just downstream of the toe, and is equal to
112% of the mean inlet velocity. This can be compared with maximum secondary
velocities of 87% of the mean inlet velocity data for entry flow in a duct with κ = 368
(Soh 1988) and 45% for entry flow in a tube with κ = 679 (Agrawal et al. 1978).
Although secondary velocities depend both on κ and curvature ratio for large κ, the
above comparison suggests that the effective Dean number in the junction geometry
is at least 700.

Despite these differences, a secondary flow collision model best explains the sepa-
ration events in the junction geometry, as follows. Consider first the separation zone
just distal to the toe at ReD = 550. It is noteworthy that both computations and
experiments show flow separation about 0.1 diameters distal to the toe, and not at
the toe as might first be expected. This implies that the transverse pressure gradient
is sufficiently strong to keep the flow attached at the toe, at least for the Reynolds
numbers considered in this work, and that separation is not due to the inability of
the fluid to negotiate the corner at the toe. Instead, separation is triggered due to a
secondary flow collision effect downstream of the toe. This collision can be thought
of as being centred at a free stagnation point, which for Re = 550 occurs at Z = 0.80,
Y = −0.85 (figure 8c; see also nodes adjacent to lower wall in figure 18b). The
elevated pressure associated with this stagnation point creates an unfavourable axial
pressure gradient for fluid near the host-tube wall at Z < 0.80, which (for ReD > 200)
causes axial flow separation proximal to the free stagnation point. This separation
leads to the displacement of the primary axial flow away from the lower wall, as
evident in figure 8(b). Associated with this free stagnation point, there is a favourable
near-wall pressure gradient for Z > 0.80, which causes fluid being supplied by the
secondary flow boundary layer to turn distally and re-establish distally directed flow.

For Reynolds numbers greater than about 450, the secondary flow is strong enough
for this entire process to repeat itself at about 1.5 diameters distal to the toe, leading
to a second separation event.† As the Reynolds number increases beyond 450, the
secondary flows increase in intensity relative to the axial flow, tightening the helical
path of the high-momentum fluid in the host tube. This causes the proximal edge of

† In view of the above scenario, one could even imagine a third separation event occurring along
the lower wall at high enough Reynolds number. We did not see any evidence for this in our study,
no doubt due to the fact that the secondary flow is significantly attenuated by viscous effects for
Z > 2.0. However, close inspection of figure 108 of Nakayama, Woods & Clark (1988) shows just
such a third separation event for flow at Re = 2000 in a pipe elbow.
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the second retrograde flow zone to move towards the toe. However, the second zone
is prevented from growing too far in this direction by fluid travelling distally from the
first retrograde flow zone. Therefore, for ReD > 600, growth of the second retrograde
flow zone occurs via the development of ‘legs’ that extend proximally and laterally
from the main body of the retrograde flow zone (figure 19). The focal point on these
legs is associated with the generation of a large amount of r-vorticity, as discussed
above.

The flow structure in the neighbourhood of the free stagnation point(s) in this
flow is particularly interesting. Immediately adjacent to the lower wall is a region of
secondary flow separation, i.e. secondary flow moving away from the symmetry plane.
This is overlain by a region characterized by non-separated secondary flow, in which
the free stagnation point is embedded. This in turn is overlain by a region of axially
moving fluid. This three-layer structure is very similar to that proposed by Stewartson
& Simpson (1982), although of course they were working within the context of a
boundary layer analysis.

At a lower ReD of 400, a boundary layer collision again leads to axial flow
separation. However, the strength of the secondary flows is somewhat less, so that
there is no secondary flow separation at Z ≈ 0.7 (figure 20a). Instead, the secondary
flow collision occurs on the lower wall of the host tube, giving rise to a half-node on
the symmetry plane of the model (figure 18a). Fluid that collides on the symmetry
plane leaves the surface of the lower wall, flowing distally and proximally along the
lower wall from the collision point (figure 18a). Thus, the flow has a simpler two-layer
structure in the neighbourhood of this point: an attached secondary flow impinges on
the symmetry plane, displacing the axial flow away from the lower wall and leading
to axial flow separation. This interesting flow structure does not seem to have been
explicitly predicted by Stewartson & Simpson (1982). It depends critically on having
just the right magnitude of secondary flows, i.e. strong enough to allow a secondary
flow collision on the symmetry plane, but not so strong as to induce secondary flow
separation in the collision region. Once the Reynolds number increases sufficiently to
induce secondary flow separation, the collision point moves off the lower wall of the
host tube and the three-layer structure discussed above is obtained.

4.2. Comments on the accuracy of the results

There are a number of factors that affect the accuracy of the numerical calculations
and the experimental data. Computationally, the factor that had the most signifi-
cant effect on the results was mesh density, especially for wall shear stresses, thus
necessitating very highly refined meshes. Other factors, such as the stopping criterion
for the calculation, the time step, and the stopping criterion for the iterative solvers
were carefully tested to ensure that they did not change the computed results. The
sensitive dependence of wall shear stress patterns on mesh density is consistent with
other observations (e.g. see figure 8 of Humphrey et al. (1985) and figure 4 of Tutty
& Pedley (1993)). Experimentally, the major uncertainty occurred in positioning the
model with respect to the laser beam, which may have caused the actual measurement
planes to differ slightly from their nominal locations. Positioning errors, particularly
on measurement planes away from the Y = 0 or X = 0 planes, interact with re-
fractive index difference between the model and the working fluid to cause further
uncertainty in the trace position. There was also evidence of weak asymmetry in the
experimentally measured flow field, as can be seen by comparing figure 13(a) with
13(c).

Despite these errors, the agreement between computed and experimentally measured
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velocities is generally very good – ranging from excellent on the symmetry plane (figure
12) to good on other planes (figures 13 and 14). However, the agreement in wall shear
stresses (figures 16 and 17) is much less satisfactory, which we believe is due to several
effects. First, wall shear stress is very difficult to measure experimentally, and thus
there is expected to be uncertainty in this measured quantity. Second, the experimental
flow field suffered from some asymmetry, which must have affected the wall shear
stress data. Third, the wall shear stress measurements were taken at a different time
than the velocity measurement, and thus may have been subject to a different set
of model alignment errors than was the case for the velocity measurements. In this
regard, it is important to note that the error bars observed in figures 16 and 17 are
based on standard errors of the mean for multiple measurements with the model
in the same position. Thus, these error bars represent the repeatability of that set
of measurements, but do not incorporate effects such as flow field asymmetry and
model misalignment. They must therefore be regarded as lower bounds on the total
measurement error of wall shear stress. Fourth, in the finite element simulations, the
‘toe’ of the junction was modelled as ‘sharp’ (i.e. with a slope discontinuity). This
region is therefore singular in the finite element context, which could have possibly
introduced local effects that affected, for example, the length of the first recirculation
zone.

Despite these uncertainties in the experimentally measured wall shear stress, the
major physical features of the flow were entirely consistent between the numerical and
experimental measurements. This certainly enhances confidence in our results. Further,
because of the well-validated nature of the numerical code and the systematic adaptive
mesh refinement studies, we believe that the computed wall shear stress features are
quantitatively correct.

4.3. Pulsatile flow effects

The original impetus of this work was the examination of blood flow dynamics in the
arterial system, where flow is pulsatile. It would therefore be of interest to extend the
present study to consider unsteady conditions. Chandran and Yearwood (Chandran &
Yearwood 1981; Yearwood & Chandran 1984) studied pulsatile flow in a curved tube,
with application to flow in the human aortic arch. They observed strong temporal
variations of secondary flows, as well as strong retrograde flows along the inner
wall during diastole (decelerating and minimum flow phase). Extrapolating these
observations to the present case suggests that the separation regions that we observed
under steady flow would be created during systole (peak flow phase) and would then
possibly collapse (by an unknown mechanism) during diastole. Particularly interesting
in this context would be examination of the dynamic behaviour of singular points
in the wall shear stress field. For example, foci are points where blood cells in the
vicinity of the wall, such as platelets and macrophages, may tend to accumulate,
thereby increasing their exposure time to endothelial cells lining the artery wall.

The pulsatile flow situation is further complicated by other effects. For example,
‘vortex waves’ have been observed in two-dimensional or quasi-two-dimensional flows
both experimentally (Sobey 1985) and computationally (Tutty 1992; Tutty & Pedley
1993). Tutty & Pedley (1993) observed the formation of strong vortices in a two-
dimensional channel, caused by the roll-up of vorticity shed from the channel walls.
The interaction between this shed vorticity and a separation region downstream of a
step was central to the initiation of these vortices, which in turn markedly affected
the wall shear stress distribution. Whether such effects would occur in an unsteady
flow containing fully three-dimensional separation patterns is an open question.
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Examination of this and other pulsatile flow effects would be worthwhile, although
in view of the high mesh densities needed in the present study, it would require a
significant investment in computational resources.

4.4. Summary

Flow in a model end-to-side anastomosis demonstrates axial flow separation driven by
a secondary boundary layer collision, analogous to that originally predicted for entry
flow in a curved tube. The strong secondary flows in the present geometry cause axial
separation to occur at Reynolds numbers of order several hundred, despite the fact
that an analogous separation event does not occur in curved tubes at a comparable
Re. For Re > 400, two separation zones form and interact, each of which is driven
by a secondary boundary layer collision.

This work was supported by the Natural Sciences and Engineering Research
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